

IMPROVING PRE-SCHOOL HEARING SCREENING OUTCOMES COMMUNITY-BASED FIRST LINE FOLLOW-UP SERVICES

Prof. De Wet Swanepoel Tersia de Kock Susan Eksteen

INTRODUCTION

BACKGROUND

Community-based hearing screening for young children using an mHealth service-delivery model

Shouneez Yousuf Hussein^a, De Wet Swanepoel ^(b), Faheema Mahomed^b and Leigh Biagio de Jager ^(b)

^aDepartment of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa; ^bDepartment of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa

GLOBAL HEALTH ACTION, 2018 VOL. 11, 1467077 https://doi.org/10.1080/16549716.2018.1467077

AIM

To investigate community-based first line follow-up services in a mHealth supported pre-school hearing screening programme.

POWERFUL PARTNERSHIPS

METHOD

STAGE 1 | Hearing Screening

STAGE 2 | First line follow-up within 2 weeks

STAGE 3 | Diagnostic assessments

RESULTS

	TOTAL
Hearing screenings	5901
Referral rate	325 (5.5%)
First line follow-up rate	292 (89.8%)
Diagnostic referrals	100 (34.2%)
Referral for wax removal (clinic)	42 (14.4%)
Attended diagnostic appointment	59 out of 81 (72.8%)
Awaiting diagnostic appointment	19
Confirmed with hearing loss	34 + 8 suspected (awaiting 2 nd diagnostic app) = 42
Required alternative intervention	4

DISCUSSION | FOLLOW-UP RATE

Community-based 89.8% follow-up rate Cape Town, Western Cape

Facility-based (Clinics) 39.4% follow-up rate Mamelodi, Gauteng

DISCUSSION | REFERRAL RATE

- 34.2% of children attending first line follow-up required a referral for diagnostic audiological assessment
- 14.4% required wax removal (clinic)
- Important to reduce load on already over-burdened diagnostic centres
- Possible reasons for false positive screening results:
 - Interpersonal variables
 - AOM
 - Noise

CONCLUSION

Decentralized first line follow-up significantly increases follow-up return rates and positively impacts overall programme outcomes

- Screening phase and follow-up phase utilise the same mHealth device (different apps) aids affordability and sustainability
- First line follow-up validates referrals to diagnostic centres

REFERENCES

- Olusanya, B. O., & Newton, V. E. (2007). Global burden of childhood hearing impairment and disease control priorities for developing countries. Lancet, 369, 1313-17.
- Olusanya, B. O., Neumann, K. J., & Saunders, J. E. (2014). The global burden of disabling hearing impairment: A call to action. Bulletin of the World Health Organization, 92, 367-73.
- World Health Organization (WHO). Deafness and hearing loss; 2014 [cited 2017 Dec 3]. Available from: www.who.int/mediacentre/factsheets/fs300/en/
- Swanepoel, D. (2016). mHealth improves access to community-based hearing care. Hearing Journal, 30 32.
- Hussein, S. Y., Swanepoel, D., Biagio de Jager L., Myburgh, H. C., Eikelboom, R. H., & Hugo, J. (2016). Smartphone hearing screening in mHealth assisted community-based primary care. Journal of Telemedicine and Telecare, 22(7), 405-12.
- Mahomed-Asmail, F., Swanepoel, D., Eikelboom, R. H., Myburgh, H. C., & Hall III, J. (2016). Clinical validity of hearScreenTM smartphone hearing screening for school children. Ear and Hearing, 37, e11-e17.
- Swanepoel, D., Myburgh, H. C., Howe, D. M., Mahomed, F., & Eikelboom, R. H. (2014). Smartphone hearing screening with integrated quality control and data management. International Journal of Audiology, 53, 841-49.
- Sandström, J., Swanepoel, D., Myburgh, H. C., & Laurent, C. (2016). Smartphone threshold audiometry in underserved primary health-care contexts.
 International Journal of Audiology, 55, 232-38.
- Yousuf Hussein S, Swanepoel D, Mahomed-Asmail F, Biagio de Jager L (2018) Community-based hearing screening for young children using an mHealth service delivery model, Global Health Action, 11(1):1467077